Waikato Septic Tanks

Ph: 07 574 7949

underground-takeaways-logo-3

Waikato Wide Septic Tank Services

 

Waikato Septic Tanks - Specialises in Septic Tank Cleaning, Septic Tanks Servicing, Cowshed Sumps, Underpasses, Well Deepening and Grease Traps.

 

Standard 10 point system check with each septic tank clean. When you want the job done above & beyond your expectations, give us a call.

 

If you have odours or seepage, call us now, don't let a small job turn into a huge expense. We’re a professional Liquid & Waste Operator, perfect work, all the time.

 

Matamata Septic Tanks

Morrinsville Septic Tanks

Te Aroha Septic Tanks

Paeroa Septic Tanks

Ngatea Septic Tanks

Waihi Septic Tanks

Contact:  Mike

Phone:   07 574 7949

 

A septic tank is a key component of the septic system, a small-scale sewage treatment system common in areas with no connection to main sewage pipes provided by local governments or private corporations. Septic systems are a type of On-Site Sewage Facility (OSSF).

 

The term "septic" refers to the anaerobic bacterial environment that develops in the tank which decomposes or mineralizes the waste discharged into the tank.

 

Periodic preventive maintenance is required to remove the irreducible solids that settle and gradually fill the tank, reducing its efficiency. A properly maintained system, on the other hand, can last for decades or possibly even a lifetime.

A septic tank generally consists of a tank (or sometimes more than one tank) of between 4000 and 7500 liters in size connected to an inlet wastewater pipe at one end and a septic drain field at the other. In general, these pipe connections are made via a T pipe, which allows liquid entry and exit without disturbing any crust on the surface. Today, the design of the tank usually incorporates two chambers (each of which is equipped with a manhole cover), which are separated by means of a dividing wall that has openings located about midway between the floor and roof of the tank.

 

Waste water enters the first chamber of the tank, allowing solids to settle and scum to float. The settled solids are anaerobically digested, reducing the volume of solids. The liquid component flows through the dividing wall into the second chamber, where further settlement takes place, with the excess liquid then draining in a relatively clear condition from the outlet into the leach field, also referred to as a drain field or seepage field, depending upon locality. A percolation test is required to establish the porosity of the local soil conditions for the drain field design.

 

The remaining impurities are trapped and eliminated in the soil, with the excess water eliminated through percolation into the soil (eventually returning to the groundwater), through evaporation, and by uptake through the root system of plants and eventual transpiration. A piping network, often laid in a stone-filled trench (see weeping tile), distributes the wastewater throughout the field with multiple drainage holes in the network. The size of the leach field is proportional to the volume of wastewater and inversely proportional to the porosity of the drainage field. The entire septic system can operate by gravity alone or, where topographic considerations require, with inclusion of a lift pump. Certain septic tank designs include siphons or other methods of increasing the volume and velocity of outflow to the drainage field. This helps to load all portions of the drainage pipe more evenly and extends the drainage field life by preventing premature clogging.

 

An Imhoff tank is a two-stage septic system where the sludge is digested in a separate tank. This avoids mixing digested sludge with incoming sewage. Also, some septic tank designs have a second stage where the effluent from the anaerobic first stage is aerated before it drains into the seepage field.

 

Waste that is not decomposed by the anaerobic digestion eventually has to be removed from the septic tank, or else the septic tank fills up and undecomposed wastewater discharges directly to the drainage field. Not only is this bad for the environment but, if the sludge overflows the septic tank into the leach field, it may clog the leach field piping or decrease the soil porosity itself, requiring expensive repairs.

 

How often the septic tank has to be emptied depends on the volume of the tank relative to the input of solids, the amount of indigestible solids, and the ambient temperature (as anaerobic digestion occurs more efficiently at higher temperatures). The required frequency varies greatly depending on jurisdiction, usage, and system characteristics. Some health authorities require tanks to be emptied at prescribed intervals, while others leave it up to the determination of the inspector. Some systems require pumping every few years or sooner, while others may be able to go 10–20 years between pumpings. An older system with an undersize tank that is being used by a large family will require much more frequent pumping than a new system used by only a few people. Anaerobic decomposition is rapidly restarted when the tank re-fills.

 

A properly designed and normally operating septic system is odor-free and, besides periodic inspection and pumping of the septic tank, should last for decades with no maintenance.

 

A well designed and maintained concrete, fiberglass, or plastic tank should last about 50 years.

Excessive dumping of cooking oils and grease can cause the inlet drains to block. Oils and grease are often difficult to degrade and can cause odor problems and difficulties with the periodic emptying.

 

Flushing non-biodegradable items such as cigarette butts and hygiene products such as sanitary napkins, tampons, and cotton buds/swabs will rapidly fill or clog a septic tank; these materials should not be disposed of in this way.

 

The use of garbage disposals for disposal of waste food can cause a rapid overload of the system and early failure.

 

Certain chemicals may damage the components of a septic tank, especially pesticides, herbicides, materials with high concentrations of bleach or caustic soda (lye) or any other inorganic materials such as paints or solvents.

 

Other chemicals can destroy septic bacteria itself, most notably silver nitrate even in very small quantities will kill an entire culture.

 

Roots from trees and shrubbery growing above the tank or the drain field may clog and/or rupture them.

 

Playgrounds and storage buildings may cause damage to a tank and the drainage field. In addition, covering the drainage field with an impermeable surface, such as a driveway or parking area, will seriously affect its efficiency and possibly damage the tank and absorption system.

 

The flushing of salted water into the septic system can lead to Sodium Binding in the drain field. The clay and fine silt particles bind together and effectively water-proof the leach field, rendering it ineffective.

 

Excessive water entering the system will overload it and cause it to fail. Checking for plumbing leaks and practicing water conservation will help the system's operation.

 

Very high rainfall, rapid snow-melt, and flooding from rivers or the sea can all prevent a drain field from operating and can cause flow to back up and stop the normal operation of the tank. High winter water tables can also result in groundwater flowing back into the septic tank.

 

Over time, biofilms develop on the pipes of the drainage field, which can lead to blockage. Such a failure can be referred to as "biomat failure".

 

Septic tanks by themselves are ineffective at removing nitrogen compounds that have potential to cause algal blooms in receiving waters; this can be remedied by using a nitrogen-reducing technology, or by simply ensuring that the leach field is properly sited to prevent direct entry of effluent into bodies of water.

More About Septic Tanks

Potential Problems

Contact:  Mike

Phone: 07 5747949

* Required

Book a Septic Tank Service

Bottom of Letterhead